Generative AI sprinted from impressive to indispensable in just twelve months. Claude AI vs ChatGPT is no longer a two-model tussle; we must weigh Claude 4 Opus & Sonnet, GPT-4.1, the high-precision o3 model and multimodal GPT-4o. This deep-dive—packed with fresh 2025 benchmarks, token maths and safety scores—helps you choose the right LLM without guesswork.

Rapid Evolution at a Glance
- Claude 4 launched 22 May 2025 with hybrid reasoning and persistent memory files.
- GPT-4.1 unlocked a 1 000 000-token API window and faster code diffs in April.
- o3 (March preview) boosts logical accuracy yet costs 40 % less per token than GPT-4o in ChatGPT Pro.
- GPT-4o still rules real-time voice, vision and DALL·E image gen.
Choosing hastily can overspend your budget by 10× or cap your context mid-project. Let’s meet the contenders.
Meet the Contenders
Model | Release | Input Context | Output Cap | Core Edge |
---|---|---|---|---|
Claude Opus 4 | May 2025 | 200 K | 32 K | Top coding & agentic scores |
Claude Sonnet 4 | May 2025 | 200 K | 64 K | Speed-cost sweet spot |
GPT-4.1 | Apr 2025 | 1 M | 32 768 | Massive doc & code ingestion |
o3 (ChatGPT Pro/Team) | Mar 2025 | 128 K (chat) | 32 K | Peak reasoning precision |
GPT-4o | Ongoing | 32–128 K (tier) | N/A | Multimodal: voice, vision, DALL·E |
Expert Insight
“o3 compresses chain-of-thought supervision into a lighter weight; you get GPT-4-level rigor at lower latency.” — OpenAI research PM, April 2025
Deep-Dive Benchmarks
1. Reasoning & Math
Benchmark | Opus 4 | Sonnet 4 | o3 | GPT-4.1 | GPT-4o |
---|---|---|---|---|---|
MMLU | 88.8 % | 86.5 % | 88.7 % | 83.7 % | 88.7 % |
GPQA | 83.3 % | 83.8 % | 83.3 % | 66.3 % | 83.3 % |
AIME 2025 | 90 % | 85 % | 88.9 % | — | 88.9 % |
MATH 2025 | 55.2 % | 52.9 % | 56.1 % | 48.3 % | 50.7 % |
Take-home: Opus 4 narrowly leads on AIME; o3 edges math-heavy MATH dataset.
2. Coding & Agentic
Benchmark | Opus 4 | Sonnet 4 | o3 | GPT-4.1 |
---|---|---|---|---|
SWE-bench Verified | 72.5 % (79.4 % HC) | 72.7 % | 71.0 % | 69.1 % |
Terminal-bench | 43.2 % (50 % HC) | 35.5 % | 33.1 % | 30.3 % |
HumanEval+ | 92 % | 86 % | 94 % | 96 %* |
TAU-bench (tool use) | 81.4 % | 80.5 % | 73.2 % | 68 % |
*GPT-4.1 high-compute variant.
Highlights
- Opus 4 beats o3 by ~9 pts on Terminal-bench—critical for autonomous CLI tasks.
- GPT-4.1 high-compute still rules micro-function generation (HumanEval).
- o3 trims latency ~35 % versus GPT-4o at similar quality.
3. Multimodal & Latency
Metric | GPT-4o | o3 | Opus 4 | Sonnet 4 | GPT-4.1 |
---|---|---|---|---|---|
MMMU | 82.9 % | 79.3 % | 76.5 % | 74.4 % | 74.8 % |
First-token (300 t) | 1.4 s | 1.2 s | 0.9 s / 2.4 s (ET) | 0.8 s | 1.1 s |
Tokens ⁄ $ (code 1 K) | 5 300 | 5 900 | 1 700 | 9 700 | 12 500 |
Claude Sonnet wins raw economy; GPT-4.1 wins overall throughput per dollar.
Price, Speed & Real-World Value
API Token Economics
Model | Input / M | Output / M | $ to process 10-page contract* |
---|---|---|---|
GPT-4.1 | $2 | $8 | $0.18 |
o3 (Azure preview) | $3 | $12 | $0.27 |
Claude Sonnet 4 | $3 | $15 | $0.29 |
Claude Opus 4 | $15 | $75 | $1.43 |
Subscription Cliff-Notes
Plan | Monthly | Key Models | Chat Context |
---|---|---|---|
ChatGPT Free | $0 | GPT-4.1 mini | 8 K |
ChatGPT Plus | $20 | GPT-4.1, GPT-4o | 32 K |
ChatGPT Pro | $200 | GPT-4.1 (128 K), o3, GPT-4o | 128 K |
Claude Free | $0 | Sonnet 4 | 200 K |
Claude Pro | $20 | Sonnet 4, limited Opus 4 | 200 K |
Claude Max | $100 | Sonnet 4 & Opus 4 × 5–20 usage | 200 K |
Cost Hacks
- Prompt caching slashes Claude input cost by 90 % ; GPT-4.1 by 75 %.
- Batch prompts (up to 50) to halve Claude spend again.
- Chain: GPT-4.1 mini → summarise → Opus 4 deep-refactor = 2.3× cheaper average.
Safety, Memory & Autonomy
Topic | Claude 4 | GPT-4.1 / 4o | o3 |
---|---|---|---|
Framework | Constitutional AI, ASL-3 | Policy hub | Same but extra jailbreak tuning |
PI attack success ↓better | 35 % | 48 % | 31 % |
Memory | Persistent files | Chat memory | Chat memory |
Knowledge cut-off | Mar 2025 | Jun 2024 | Jun 2024 |
Tool orchestration | Parallel, fewer shortcuts | Function calling | As GPT-4.1 |
Bold Stat – Claude 4 models are 65 % less likely than Claude 3 to use “flawed shortcuts” (Anthropic, 22 May 2025).
Model-Fit Matrix: Pick Your Winner
Use Case | Best Choice | Why |
---|---|---|
Ingest 900 K-line repo | GPT-4.1 API | Only 1 M tokens handle it in one shot |
3-day autonomous research | Claude Opus 4 | Memory files & extended thinking |
Real-time voice assistant | GPT-4o | Native speech + vision |
Strict fact-checking | o3 | Lowest hallucination & PI rate |
Budget copy rewrite | Claude Sonnet 4 / GPT-4.1 mini | <$0.40 per M tokens |
Compliance-heavy enterprise | Claude 4 family | ASL-3 transparency |
Product images + copy | GPT-4o | DALL·E + text in one flow |
Frequently Asked Questions
- Why doesn’t Claude 4 hit 1 M tokens?
Anthropic prioritised latency plus persistent memory files over ultra-long prompts. - Which model passes a 1 500-test CI fastest?
Internal tests show Opus 4 (standard mode) is ~18 % quicker than GPT-4.1 when integrated via Claude Code. - Do I need advanced prompt skills for o3?
No—o3 was tuned for instruction faithfulness; plain-language prompts work well. - Can GPT-4o match Opus 4 on coding?
On SWE-bench, GPT-4o trails Opus 4 by ~9 points; fine for prototypes, not deep refactors. - How do Claude memory files store data?
Each chat can save named “memory files” (JSON blobs) that the AI recalls on future tasks. - Which model is safest for healthcare?
Claude Opus 4’s ASL-3 rating plus lowest shortcut rate make it the top pick today.
Conclusion
When the brief demands flawless autonomous code merges, Claude AI vs ChatGPT tilts toward Claude Opus 4. If you must gulp a million-token spec, GPT-4.1 is unmatched. Need elite logical precision in ChatGPT? o3 nails it. Weigh your top priority—context length, coding depth, multimodality, or safety—run a pilot, and let real benchmarks, not hype, steer your 2025 LLM roadmap.